

1

WS-Federation: Active Requestor Profile
Version 1.0
July 8, 2003

Authors

Siddharth Bajaj, VeriSign
Giovanni Della-Libera, Microsoft
Brendan Dixon, Microsoft
Maryann Hondo, IBM
Matt Hur, Microsoft
Chris Kaler (Editor), Microsoft
Hal Lockhart, BEA
Hiroshi Maruyama, IBM
Anthony Nadalin (Editor), IBM
Nataraj Nagaratnam, IBM
Andrew Nash, RSA Security
Hemma Prafullchandra, VeriSign
John Shewchuk, Microsoft

Copyright Notice
(c) 2001-2003 IBM Corporation, Microsoft Corporation, BEA Systems, Inc., RSA
Security, Inc., Verisign, Inc. All rights reserved.

BEA, IBM, Microsoft, RSA Security and VeriSign (collectively, the "Authors") hereby
grant you permission to copy and display the WS-Federation: Active Requestor
Specification, in any medium without fee or royalty, provided that you include the
following on ALL copies of the WS-Federation: Active Requestor Specification, or
portions thereof, that you make:

1. A link or URL to the Specification at this location

2. The copyright notice as shown in the WS-Federation: Active Requestor
Specification.

EXCEPT FOR THE COPYRIGHT LICENSE GRANTED ABOVE, THE AUTHORS DO NOT
GRANT, EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL
PROPERTY, INCLUDING PATENTS, THEY OWN OR CONTROL.

THE WS-Federation: Active Requestor SPECIFICATION IS PROVIDED "AS IS," AND
THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE WS-Federation: Active Requestor SPECIFICATION ARE SUITABLE
FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

2

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE WS-Federation: Active Requestor SPECIFICATION.

The WS-Federation: Active Requestor Specification may change before final release
and you are cautioned against relying on the content of this specification.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific,
written prior permission. Title to copyright in the WS-Federation: Active Requestor
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This specification defines how the cross trust realm identity, authentication and
authorization federation mechanisms defined in WS-Federation are used by active
requestors such as SOAP-enabled applications.

Modular Architecture
By using the XML, SOAP and WSDL extensibility models, the WS* specifications are
designed to be composed with each other to provide a rich Web services
environment. WS-Federation: Active Requestor by itself does not provide a complete
security solution for Web services. WS-Federation: Active Requestor is a building
block that is used in conjunction with other Web service and application-specific
protocols to accommodate a wide variety of security models.

Status
This WS-Federation Active Requestor Specification is an initial public draft release
and is provided for review and evaluation only. BEA, IBM, Microsoft, RSA Security
and VeriSign hope to solicit your contributions and suggestions in the near future.
BEA, IBM, Microsoft, RSA Security and VeriSign make no warrantees or
representations regarding the specifications in any manner whatsoever

Table of Contents
1. Introduction
1.1. Goals and Requirements
1.1.1 Requirements
1.1.2. Non-Goals
1.2. Notational Conventions
1.3. Namespaces
1.5. Terminology
2. Model
3.1. Sign-On
3.2. Sign-Out

3

3.3. Attributes
3.4. Pseudonyms
4. Syntax
4.2. Requesting Security Tokens
4.3. Returning Security Tokens
4.4. Sign-Out Syntax
4.5. Attribute Requests
4.6. Pseudonym Requests
5. Detailed Example
6. Additional Examples
6.1. No Resource STS
6.2. 3rd-Party STS
6.3. Delegated Resource Access
7. Security Tokens
7.1. X.509v3
7.2. Kerberos
7.3. XrML
7.4. SAML
8. Error Handling
9. Security Considerations
10. Acknowledgements
11. References

1. Introduction
The WS-Federation specification defines an integrated model for federating identity,
authentication and authorization across different trust realmss. This specification
defines how the federation model is applied to active requestors such as SOAP
applications.

1.1. Goals and Requirements
The primary goal of this specification is to define mechanisms for federation of
identity, authentication, and authorization information as applied to active
requestors.

1.1.1 Requirements

The following list identifies the key driving requirements for this specification:

• Enable sharing of identity, authentication, and authorization data between and
through active requestors

• Brokering of trust and security token exchange in a active requestor environment

4

• Optional hiding or protection of identity information and other attributes in a
active requestor environment

1.1.2. Non-Goals

The following topics are outside the scope of this document:

• Definition of message security or trust establishment/verification protocols

• Specification of new security token formats

1.2. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

When describing abstract data models, this specification uses the notational
convention used by the XML Infoset. Specifically, abstract property names always
appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses the notational
convention of WS-Security. Specifically, each member of an element’s [children] or
[attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of
an element wildcard (<xs:any/>). The use of @{any} indicates the presence of an
attribute wildcard (<xs:anyAttribute/>).

1.3. Namespaces
The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2002/06/soap-envelope

wsse http://schemas.xmlsoap.org/ws/2003/07/secext

wsu http://schemas.xmlsoap.org/ws/2002/07/utility

wp http://schemas.xmlsoap.org/ws/2002/12/policy

1.4. Terminology
The following definitions outline the terminology and usage in this specification.

Active Requestor – An active requestor in a Federation is an application (possibly a
Web browser) that is capable of issuing (and receiving) SOAP messages such as
those described in WS-Security and WS-Trust.

Claim – A claim is a declaration made by an entity (e.g. name, identity, key, group,
privilege, capability, attribute, etc).

Security Token – A security token represents a collection of claims.

5

Signed Security Token – A signed security token is a security token that is
asserted and cryptographically signed by a specific authority (e.g. an X.509
certificate or a Kerberos ticket)

Proof-of-Possession Token – A proof-of-possession token is a security token that
contains data that a sending party can use to demonstrate proof-of-possession.
Typically, although not exclusively, the proof-of-possession information is encrypted
with a key known only to the sender and recipient parties.

Digest – A digest is a cryptographic checksum of an octet stream.

Signature - A signature is a value computed with a cryptographic algorithm and
bound to data in such a way that intended recipients of the data can use the
signature to verify that the data has not been altered since it was signed by the
signer.

Security Token Service (STS) - A security token service is a Web service that
issues security tokens (see WS-Security and WS-Trust). That is, an STS makes
claims based on evidence, to entities that trust the STS. To communicate trust, one
service requires proof, such as a security token or set of security tokens, and issues
a security token with its own trust statement (note that for some security token
formats this can just be a re-issuance or co-signature on the original token). This
forms the basis of trust brokering.

Trust - Trust is the characteristic that one entity is willing to rely upon a second
entity to execute a set of actions and/or to make set of assertions about a set of
subjects and/or scopes in a way that is expected.

Trust Domain/Realm - A Trust DomainRealm is a security space in which the
target of a request can determine whether particular sets of credentials from a
source satisfy the relevant security policies of the target. The target may defer trust
to a third party thus including the trusted third party in the Trust Realm.

Direct Trust – Direct trust is when a relying party accepts as true all (or some
subset of) the claims in the token sent by the requestor.

Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second
party who, in turn, trusts or vouches for, a third party.

Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered
trust where the second party negotiates with the third party, or additional parties, to
assess the trust of the third party.

Signature validation – Signature validation is the process of verifying that the
message received is the same as the one sent.

Sender Authentication – Sender authentication is corroborated authentication
among Web service actors/roles indicating the sender of a Web service message
(and its associated data). Note that it is possible that a message may nave multiple
senders if authenticated intermediaries exist. Also note that it is application-
dependent (and out of scope) as to how it is determined who first created the
messages as the message originator might be independent of, or hidden behind an
authenticated sender.

6

Realm or Domain – A realm or domain represents a single unit of security
administration or trust.

Federation – A federation is a trusted relationship established by a collection (at
least two) of realms. The level of trust may vary, but typically includes
authentication and may include authorization.

Identity Provider – Identity Provider is an entity that acts as a peer entity
authentication service to end requestors and data origin authentication service to
service providers (this is typically an extension of a security token service)

Single Sign On (SSO) – Single Sign On is an optimization of the authentication
sequence to remove the burden of repeating actions placed on the end requestor. To
facilitate SSO, an element called an Identity Provider can act as a proxy on a
requestor's behalf to provide evidence of authentication events to 3rd parties
requesting information about the requestor. These Identity Providers are trusted 3rd
parties and need to be trusted both by the requestor (to maintain the requestor's
identity information as the loss of this information can result in the compromise of
the requestors identity) and the Web services which may grant access to valuable
resources and information based upon the integrity of the identity information
provided by the IP.

Identity Mapping – Identity Mapping is a method of creating relationships between
identity properties. Some Identity Providers may make use of id mapping.

Sign-Out – A sign-out is the process by which a principal indicates that they will no
longer be using their token and services in the realm can destroy their token caches
for the principal.

2. Model
The WS-Federation specification defines a model and set of messages for brokering
trust and federating identity and authentication information across different trust
realms. This chapter presents how this model is applied to active requestors such as
Web services requestors.

The federation model described in WS-Federation builds on the foundation
established by WS-Security and WS-Trust. Consequently, this profile defines
mechanisms for requesting, exchanging, and issuing security tokens within the
context of active requestors.

The model defined in this specification allows for support of different but compatible
message exchanges. For example, the resource may act as its own security token
service (STS) and does not use a separate service (or even URI) thereby eliminating
some steps. It is expected that subsequent profiles will be defined to characterize
specific exchange patterns.

3.1. Single Sign On
Since active requestors are capable of issuing their own messages, they can make
use of the mechanisms defined within WS-Security, WS-Trust, and WS-Federation.

At a high-level, policy is used to indicate communication requirements. Requestors
can obtain the policy ahead of time or via error responses from services. In general,

7

requestors are required to obtain a security token (or tokens) from their Identity
Provider (or STS) when they authenticate themselves. The IP/STS generates a
security token for use by the federated party. This is done using the mechanisms
defined in WS-Trust. In some scenarios, the target service acts as its own IP/STS so
communication with an additional service isn't required. Otherwise the requestor
may be required to obtain additional security tokens from service-specific or service-
required identity providers or security token services. The figure below illustrates one
possible flow.

While the example above doesn't illustrate this, it is possible that the WS-Trust
messages for security tokens may involve challenges to the requestors. Refer to
WS-Trust for additional information.

3.2. Sign-Out
Just as it isn't typical for an active requestor to sign-in, it isn't typical to sign-out
either. However, for those scenarios where this is desirable, the sign-out messages
defined in WS-Federation MAY be used.

In situations where federated sign-out messages are desirable, The requestor's
IP/STS SHOULD keep track of the realms to which it has issued tokens – specifically
the IP/STS for the realms (or resources if different). When the sign-out is received

8

at the requestor's IP/STS, the requestor’s IP/STS is responsible for issuing federated
sign-out messages to interested and authorized parties. The exact mechanism by
which this occurs is up to the IP/STS, but it is strongly RECOMMENDED that the sign-
out messages defined in WS-Federation be used.

When a federated sign-out message is received at a realm, the realm SHOULD clean-
up any cached information and delete any associated state as illustrated in the figure
below:

3.3. Attributes
For active requestors, attribute services are identified via WS-Policy as described in
WS-Federation. Web services and other authorized parties can obtain or even
update attributes using the messages defined by the specific attribute service.

The figure below illustrates a scenario where a requestor issues a request to a Web
service. The request may include the requestor's policy or it may be already cached
at the service or the requestor may use WS-PolicyExchange. The Web service issues
a request to the requestor's attribute service to obtain the values of a few attributes,
WS-Policy may be used to describe the location of the attribute service. The service
is authorized so the attributes are returned. The request is processed and a
response is returned to the requestor.

9

3.4. Pseudonyms
For active requestors, pseudonym services are identified via WS-Policy as described
in WS-Federation. Services and other authorized parties can obtain or manage
pseudonyms using the messages defined in WS-Federation.

The figure below illustrates a scenario where a requestor issues a request to a Web
service. The request may include the requestor's policy and the location of the
requestor’s pseudonym service or it may be already cached at the Web service. The
Web service issues a request to the requestor's pseudonyms service to obtain the
pseudonyms that are authorized by the security token. The Web service is
authorized so the pseudonym is returned. The request is processed and a response
is returned to the requestor.

10

As described in WS-Federation, the pseudonym and IP/STS can interact as part of
the token issuance process. The figure below illustrates a scenario where a
requestor has previously associated a pseudonym and associated security token for a
specific realm. When the requestor requests a security token to the domain/realm,
the pseudonym and token are obtained and returned to the requestor. The
requestor uses these security tokens for accessing the Web service.

4. Syntax
This section defines the syntax for the federation mechanisms described in the model
above.

4.1. Requesting Security Tokens
Security tokens are requested using the <RequestSecurityToken> message defined
in the WS-Trust specification.

4.2. Returning Security Tokens
Security tokens are returned using the <RequestSecurityTokenResponse> message
defined in the WS-Trust specification.

4.3. Sign-Out Syntax
Explicit sign-out notification is performed using the <SignOut> message defined in
the WS-Federation specification.

Similarly, federated sign-out messages use the same message element.

11

4.4. Attribute Requests
Attributes are requested and updated using messages specific to the attribute
services as described in the WS-Federation Specification. This specification doesn't
mandate a specific attribute store technology.

4.5. Pseudonym Requests
Pseudonyms are requested and updated using the messages and mechanisms
described in the WS-Federation specification.

5. Detailed Example
This section provides a detailed example of the protocol defined in this specification.
The exact flow can vary significantly; however, the following diagram and description
depict a common sequence of events.

In this scenario, an active requestor is attempting to access a service which requires
security authentication to be validated by the resource's security token service.

Step 1: Acquire Policy

12

If the requestor doesn't already have the policy for the service, it can obtain it using
the mechanisms defined in WS-MetadataExchange.

Step 2: Return Policy

The requested policy is returned using the mechanisms defined in WS-
MetadataExchange.

Step 3: Request Security Token

The requestor requests a security token from its IP/STS (assuming short-lived
security tokens) using the mechanisms defined in WS-Trust
(<RequestSecurityToken>)

Step 4: Issue Security Token

The IP/STS returns a security token (and optional proof of possession information)
using the mechanisms defined in WS-Trust (<RequestSecurityTokenResponse> and
<RequestedProofToken>)

Step 5: Request Security Token

The requestor requests a security token from the Web services IP/STS for the target
Web service using the mechanisms defined in WS-Trust (<RequestSecurityToken>).
Note that this is determined via policy or some out-of-band mechanism.

Step 6: Issue Security Token

The Web service's IP/STS returns a token (and optionally proof of possession
information) using the mechanisms defined in WS-Trust
(<RequestSecurityTokenResponse>)

Step 7: Send secured request

The requestor sends the request to the service attaching and securing the message
using the issued tokens as described in WS-Security.

Step 8: Return result

The service issues a secured reply using its security token.

6. Additional Examples
This section presents interaction diagrams for additional active requestor scenarios.

6.1. No Resource STS
The figure below illustrates the resource access scenario above, but without a
resource STS. That is, the Web service acts as its own STS:

13

6.2. 3rd-Party STS
The figure below illustrates the resource access scenario above, but trust is brokered
through a 3rd-party STS:

14

Note that 3rd-Party IP/STS is determined via policy or some out-of-band mechanism.

6.3. Delegated Resource Access
The figure below illustrates where a resource access data from another resource on
behalf of the first resource:

15

In this example, the requestor used a <RequestSecurityTokenResponse> as defined
in WS-Trust to issue the delegation token in Step 1. This provides to Web Service 1
the necessary information so that Web Service 1 can act on the requestor’s behalf as
it contacts Web Service 2.

7. Security Tokens
When accepting security tokens, recipients SHOULD:

• Verify the token is formatted correctly

• Verify STS signature

• Verify the token validity interval

• Verify properties requested by policy such as required authentication type,
maximum time since authentication instant (e.g. a password must have been
submitted within 1 hour), identity properties etc.

This chapter describes token format-specific requirements but it does not mandate
usage of a particular token type.

7.1. X.509v3
This specification places the following requirements on X.509 tokens:

• Tokens MUST contain the name of the issuing authority and a signature of the
issuing authority over the whole token unless a secure channel is used to
communicate the token. That is, a signature element over the assertions.
Note that it is RECOMMENDED that a signature be used even if a secure
channel is used.

• Tokens MUST contain the subject identifier uniquely identifying the subject for
whom the token was granted. X.509 does not specify rules for Principal

16

field. X.509 tokens conformant with this specification SHOULD assure the
principals issued are unique across realms and also the realm SHOULD be
derivable from the principal name.

• Tokens MAY contain the time of initial authentication, validity interval and the
type of authentication that was performed.

• Tokens MAY contains Certificate Revocation Information, such as a CRL
distribution point

• X.509 certificates MUST be carried within a wsse:BinarySecurityToken
element whose ValueType is wsse:X509v3.

7.2. Kerberos
This specification places the following requirements on Kerberos tokens:

• Kerberos ticket-granting tickets MUST be carried within a
wsse:BinarySecurityToken element whose ValueType is
wsse:Kerberosv5TGT.

• Kerberos service tickets MUST be carried within a
wsse:BinarySecurityToken element whose ValueType is
wsse:Kerberosv5ST.

• The symmetric key used SHOULD be derived from the desired realm

7.3. XrML
This specification places the following requirements on XrML tokens:

• Processors that MUST support the xrml:issuer element with and without
contained signatures. Processors SHOULD NOT include a contained signature
unless the xrml:license conveys the key (directly or indirectly).

• Tokens that contain signatures in one or more xrml:issuer elements MUST
declare all XML namespaces on the xrml:license element.

• Processors MUST include an xrml:issuer element identifying the issuer
under xrml:details.

• Processors MUST include within the xrml:issuer element an
xrml:validityInterval when the xrml:license token conveys the key
(directly or indirectly). The xrml:validityInterval MUST contain both
xrml:notBefore and xrml:notAfter elements.

• Tokens SHOULD contain a recipient identifier indicating the scope of usage
(such as the resource or realm) - this is represented by grant resource,
with the tacit assumption that the realm is used.

7.4. SAML
This specification places the following requirements for SAML tokens:

• Tokens MUST contain a signature of the issuing authority over the whole
token unless a secure channel is used to communicate the token. That is, a
signature element over the SAML assertion. Note that it is RECOMMENDED
that a signature be used even if a secure channel is used.

17

• Tokens MUST contain the subject identifier uniquely identifying the subject for
whom the token was granted. SAML does not specify rules for
NameIdentifier element. The SAML assertions conformant with this
specification SHOULD assure the identifiers issued are unique across realms
and also the realm SHOULD be derivable from the subject identifier.

• Tokens SHOULD contain a recipient identifier indicating the scope of usage
(such as the resource or realm) - the AudienceRestriction or Recipient
elements in the SAML assertion.

• Tokens MUST contain the time of initial authentication, validity interval and
the type of authentication that was performed. The validity interval in the
SAML assertion is satisfied by the NotBefore and NotOnOrAfter attributes of
the Conditions element. The initial authentication type and time are covered
by the attributes of AuthenticationStatement element.

• Tokens MAY contain additional identity information. If they do, the schema
describing the additional information MUST be understood by the recipient or
the token MUST be rejected.

8. Error Handling
Errors are handled using the mechanisms described in the WS-Security, WS-Trust,
WS-Federation, and any referenced specifications. No additional error semantics or
error codes are defined by this specification.

9. Security Considerations
This section outlines security considerations beyond those identified in WS-
Federation and other Web service security specifications.

If a security token is not self-securing, it SHOULD be included in some form of
message integrity mechanism such as the mechanisms described in WS-Security.

If privacy is a concern, the security tokens MAY be encrypted for the authorized
recipient(s) using the mechanisms described in WS-Security.

10. Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams, including:

Tim Hahn, IBM
Heather Hinton, IBM
Bronislav Kavsan, RSA Security
Anthony Moran, IBM
Robert Philpott, RSA Security
Yordan Rouskov, Microsoft
Shane Weeden, IBM
Jeff Spelman, Microsoft

11. References
[KEYWORDS]

18

S. Bradner, "Key Words for Use in RFCs to Indicate Requirement Levels," RFC
2119, Harvard University, March 1997.

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part0/
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part1/
Draft, SOAP 1.2, http://www.w3.org/TR/soap12-part2/

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.

[WS-Federation]
"Web Services Federation Language", BEA, IBM, Microsoft, RSA Security,
VeriSign, July 2003

[WS-Security]
"Web Services Security Language", IBM, Microsoft, VeriSign, April 2002.
"WS-Security Addendum", IBM, Microsoft, VeriSign, August 2002.
"WS-Security XML Tokens", IBM, Microsoft, VeriSign, August 2002

[WS-Policy]
"Web Services Policy Framework", BEA, IBM, Microsoft, SAP, December 2002

[WS-PolicyAttachment]
"Web Services Policy Attachment Language", BEA, IBM, and Microsoft, SAP,
December 2002

[WS-PolicyAssertions]
"Web Services Policy Assertions Language", BEA, IBM, Microsoft, SAP, December
2002

[WS-Trust]
"Web Services Trust Language", IBM, Microsoft, RSA, VeriSign, December 2002

[WS-SecureConversation]
"Web Services Secure Conversation Language", IBM, Microsoft, RSA, VeriSign,
December 2002

[WS-SecurityAssertions]
"Web Services Security Assertions Language", IBM, Microsoft, RSA, Verisign
December 2002

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

